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ABSTRACT

This report discusses model order determination algorithms for autoregressive
filter techniques applied to tactical radio direction finding. In particular the difficulties
imposed by multipath are examined. The related issue of the determination of the number
of signals for autoregressive radio direction finding techniques using the eigen
decomposition method is also discussed. The performance of both model order and signal
number determination methods are also evaluated using computer simulations.

RESUME

Ce rapport contient une discussion d'algorithmes de modules auto-r~gressifs pour
l'ordre de filtres utilis6s pour la d6termination de la direction d'arriv6e de radios tactiques.
Les difficult~s cr6es par les trajectoires multiples recoivent une attention sp6ciale. On
discute aussi du sujet connexe du comptage du nombre de signaux par des techniques radio
de determination de direction d'arriv~e basees sur des vecteurs propres. Une simulation par
ordinateur est utilis~e pour 6valuer les performances des m6thodes de d6termination de
l'ordre et du nombre de signaux.
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EXECUTIVE SUMMARY

This report reviews methods to determine the optimum model order of adaptive
filter techniques applied to the problem of radio direction finding (DF), and the related
issue of the determination of the number of signals for adaptive filter techniques using
eigen decomposition techniques. This work was carried out in support of research into
advanced radio direction finding techniques for land tactical applications.

For radio direction finding applications, adjusting the adaptive filter model order
to a value less than the maximum (i.e. one less than the number of antennas in the sensor
array) increases the ability of an adaptive filter based DF algorithm to resolve multipath
signals. It is from this point of view that model order determination methods are discussed
in this report.

In general, the optimum model order is not known beforehand, so a number of
model order determination methods have been proposed to tackle this problem. In this
report, these are classified according to the autocorrelation matrix estimator used. Three
classes of estimators are considered, which are: (a) the autocorrelation method, (b) the
covariance and modified covariance method, and (c) the eigen decomposition method.

The autocorrelation method is not appropriate for accurate direction finding
purposes since adaptive filter DF techniques based on this method have very poor
resolution. However, it is discussed in this report since the first model order determination
algorithms were proposed for this method, and many of the problems encountered are
common to all classes. The performance of these algorithms is quite poor, typically picking
model orders that are too low.

The covariance and modified covariance methods are much superior for direction
finding purposes than the autocorrelation method. It has been determined by researchers
[10] both analytically and experimentally that a model order of between N/3 and N/2 is
suitable, where N is the number of antenna sensors. Model orders higher than this lead to
spurious estimates which severely degrade bearing accuracy.

The eigen decomposition method enhances the signal to noise ratio of the
autocorrelation matrix estimated using either the covariance or modified covariance
method. This enhancement suppresses spurious bearing estimates so that higher model
orders can be used. Values of between 2N/3 and 3N/4 have been proposed.

An additional parameter required to optimally enhance the signal to noise ratio
using the eigen decomposition method is the number of radio signals present. Since this
problem is closely related to the model order determination problem, model determination
methods have been adapted for this purpose. For widely spaced (in bearing) signals, and
signal to noise ratios of 20 dB, the adapted algorithms work extremely well. Under more
realistic conditons (i.e. closely spaced signals, lower signal to noise ratios, etc.) it is
expected that the ability of these signal number determination algorithms to accurately
determine the number of signals will degrade, but not before the bearing estimation
accuracy of DF algorithms using the eigen decomposition method also degrade.

In general, methods to determine the number of signals used in conjunction with
adaptive filter DF methods, where both are based on using the eigen decomposition
method, appear to offer the best performance. The worst performance is provided by model
order determination methods used in conjunction with DF methods where both are based
on the autocorrelation method. In this case performance is very poor, and inappropriate for
direction finding purposes when accurate bearing estimation is necessary.
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1.0 INTRODUCTION

Current conventional land tactical radio direction finding systems suffer from two
major problems. One is the inability to accurately determine the bearing of several radio
transmitters simultaneously, and the second is a degradation of performance in the
presence of multipath. A considerable amount of research and development has been
carried out over the last twenty years in advanced spectral estimation algorithms which
has led directly to the development of superresolution radio direction finding (DF)
algorithms which may be capable of dealing with these problems. In particular, adaptive
filter methods (including eigen based methods) have shown promise in this area with
performances approaching maximum likelihood methods [1].

The superresolution abilities of adaptive filter methods is based on matching the
sensor data with an appropriate signal model. At the heart of these methods lies a system
of equations, formed from the antenna sensor data, whose solution provides the signal
bearings. If M signals impinge upon the sensor array (where M is less than the number of
sensors), then M linearly independent equations are required to solve for the M signal
bearings.

In the case where the signals are all noncoherent (transmitted by independent
transmitters) M linearly independent equations may be formed from M or more sensor data
vectors. In this report, a data vector is defined as a single set of measurements of all the
sensor outputs taken at time instant tin. Data vectors are assumed to be u.- formly sampled
in time where the sampling rate is low enough so that consecutive data vcctors are not fully
correlated (i.e. not scalar versions of each other).

In the case of multipath signals, consecutive data vectors remain correlated in
time no matter what the sampling interval (except for the temporal noise component) so
that effectively only one data vector is available. To generate the required number of
linearly independent equations, the data is divided into subsets or subarrays from which
the required number of linearly independent equations may be generated. This is discussed
in more detail in section 1.2. In adaptive filtering terminology, the number of antenna
sensors in the subarray, minus one, is called the model order. In direction finding
terminology, the technique of using lower model orders to generate more linearly
independent equations is called spatial averaging [2].

From the preceding discussion, it is apparent that spatial averaging is a necessity
when direction finding on multipath signals, and completely unnecessary if the signals are
noncoherent and a sufficient number of data vectors (>A) have been measured.
Consequently, model order selection is discussed in the context of determining the bearing
of the direct and indirect paths of a signal in a multipath environment.

A number of methods to determine model order and the number of signals present
are evaluated in this report. In particular, they are evaluated with respect to the
limitations imposed by multipath and tactical constraints which restrict the number of
sensors. The effect of multipath is equivalent to DF processing using a single data vector
since additional vectors are fully correlated (ignoring the noise). Consequently only single
vector processing is considered in this report. To satisfy the tactical constraint the sensor
arrays are limited to 16 antenna sensors. Additionally, since spatial averaging can only be
used for linear sensor arrays with uniformly spaced sensors, only these type of sensor arrays
will be considered.
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Noise discussed in this report is assumed to be additive white Gaussian in nature
and uncorrelated between sensors. For a single data vector the effects of temporal and
spatial noise are indistinguishable so no distinction is made between these two types of
noise.

1.1 Spectral Estimation and Radio Direction Finding

The application of spectral estimation concepts to radio direction finding is
illustrated using Figure 1. A single radio signal in a noiseless environment impinges on an
antenna baseline with some arbitrary direction of arrival. The amplitude and phase
measured at sensor n is represented by the complex value,

X'- = yWe- j (nWs d+O) (1.1)

where y(t) represents the complex baseband modulation envelope (for all types of
modulation and is assumed to remain constant for the measurement of a single vector), d is
the spacing between consecutive sensors, 0 is the signal phase which is a function of the
distance from the transmitter to sensor 0, and

= -T cos(O) (1.2)

Here A is the wavelength, and 0 is the signal bearing in azimuth. (Signals with elevation
angles different than 0 degrees are not considered here). Inspection of equation (1.1) reveals
that xn represents vectors of a complex sinusoid measured spatially (i.e. with respect to the
sensor baseline) and that w, is the spatial frequency of the complex sinusoid.

Sensor 0 1 2 3 4 5 6 7

FIGURE 1: Radio direction finding sensor array

If a number of signals with different bearings impinge upon the sensor system then
the spatial signal z,, is the sum of a number of complex sinusoids of different amplitudes
and frequencies of the form of equation (1.1). Spectral estimation techniques can be used to
resolve the various components by first generating the spatial power spectral density
function. By taking advantage of equation (1.2), this spectrum is converted to a
DF spectrum which gives the power density versus bearing. The location of the peaks (local
maximums) in the DF spectrum are then used as the estimates for the signal bearings.
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1.2 Autoregressive Model

The discussion that follows focuses on adaptive filtering spectral estimation
techniques which have been adapted for the purposes of radio direction finding. The types
of filters used in these applications can be classified as autoregressive (AR), moving
average (MA), or autoregressive-moving average (ARMA). In general, techniques involving
either MA or ARMA filters are computationally more difficult since they involve a set of
nonlinear equations, and for the purposes of this report will not be considered.

Autoregressive methods are based on the idea that a uniformly sampled sequence
of complex antenna sensor data, {ZO, Xl, ZX2, ... , ZN-}, (where N represents the number of
sensors) can be modelled as a linear rational system driven by white noise.
Mathematically,

Zn, = - Z,,-, + Vm, (1.3)
n=1

where v, is a white noise source with a variance of a2, and p is the model order which is
chosen to be less than N. For a particular model order p, the values of the tap weight
coefficients a, are usually chosen so that the variance of the white noise v, is minimized.
Equation (1.3) also represents a linear predictor where p past data vectors are used to
predict the current value x,. In this context, vm represents the prediction error.

Based on minimizing the noise variance, or prediction error, the optimum
weighting coefficients can be found by solving the augmented normal matrix equations
given by

Ra = a 2u, (1.4)

where the (p+l)x(p+l) autocorrelation matrix R is defined by,

E{xo XO}, E{xo xl}, E{xo X2}, ... , E{zo x}

E{XI ZO}, E{z Xl}, E{XI X2}, ... , E{xi x}
R= E{X2 zo}, E{ X2 z,}, E{z 2 z 2}, ... , E{z 2 Xp} (1.5)

E{xp ZO}, E{z xj} E{zf X2} ... , E{xzpp}

the augmented tap weight vector a is defined by,

a,
a2

a= a2 (1.6)

ap
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and the vector u is defined by,

0
U 0 (1.7)

~0

Using autoregressive filter techniques, an autoregressive DF estimator can be
defined by [3]

S() lael (1.8)

where e is the p+ 1 element steering vector defined by,

1
e*jws

d

e= e~i% 2d (1.9)

and ws was defined previously by equation (1.2).

1.3 The Estimated Autocorrelation Matrix

To this point, the calculation of the tap weight filter coefficients, and the
formation of the spatial spectral density function (equation (1.8)) using these coefficients
has been discussed. The assumption was made that the optimum model order p was
known. In the case where the true autocorrelation matrix is known, the higher the order of
p, the better the resolution of the AR spectral estimator. Consequently, when the true
autocorrelation matrix is known, the best value of p is equal to N-1.

In most practical estimation problems the true autocorrelation matrix is unknown
and must be estimated from the data. The estimated autocorrelation matrix can be
defined by the equation

RZ ii+2YY, (1.10)
i j

where x, represents a p+l length column vector containing the sensor data in the forwards
direction. That is,

z4
x= Z,.,2 (1.11)
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and y represents a p+1 length column vector containing the conjugated sensor data in the
reverse direction. That is,

Zi +p

* Zjp-2 (1.12)

Xj J

The range of the indices i and j have purposely been left unspecified since different
methods use different ranges.

2.0 MODEL ORDER DETERMINATION FOR THE
AUTOCORRELATION METHOD

The autocorrelation method of estimating the autocorrelation matrix can be
defined from equation (1.10) as

- N-1
R = N-gxi (2.1)

R =-

Since this expression involves unknown data (z-, Z2, etc., and ZN, zN.1, etc.), the unknown
data is assumed to be zero. In other words, the data is pre- and postwindowed. Windowing
results in a loss of resolution which becomes progressively worse as the number of sensors,
V, decreases. As a result, the autocorrelation method is generally not favoured for spectral
estimation problems involving short data records (such as direction finding), however, it is
mentioned here since some of the earliest model order determination algorithms were
evaluated using this approach.

Figure 2 is an example of the effect that model order selection has on the AR
spectral estimate where the autocorrelation matrix described by equation (1.10) was used.
In this example a radio direction finding system using a linear 16 element sensor array with
0.5A spacing was simulated. The actual signals had unit power and bearings of 40 and 100
degrees respectively. The noise variance was 0.01.

Inspection of Figure 2 reveals that when the model order is less than the number
of signals (in this case p< 2 ), the resolution of the spectral estimator is seriously degraded.
In this case there are fewer filter coefficients than there are signals.

When the model order becomes too large (in this case p> 4 ) the spectral peaks
corresponding to the signal locations become corrupted and spurious peaks begin to appear.
In this case there are more filter coefficients than there are signals. This leads to better
resolution, however, the extra filter coefficients, which model the noise, occasionally give
rise to spurious estimates as seen in this example.

Another problem is that for successively higher model orders the elements of the
autocorrelation matrix are formed from fewer and fewer data values. This leads to greater
variance in the autocorrelation matrix estimate and in turn leads to greater variance in the
spectral estimate.
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To quantify the effect of model order selection on DF accuracy, 100 DF trials were
simulated for a two signal case (M=2) and a five signal case (M=5) using the same DF
sensor system described for Figure 2 (i.e. 16 elements). The results are shown in Figure 3.
For each trial the signal powers were set to 1, the signal phases were randomly chosen
between 0 and 27r, and the signal bearings were set to 40 and 100 degrees for the two signal
case, and 40, 70, 100, 140, and 160 for the five signal case. The noise variance was set at
0.01 (SNR = 20 dB). Bearing errors were calculated by locating the M largest peaks in the
DF spectrum and subtracting these bearings from the true bearings. In cases where there
were less than M peaks in the DF spectrum, such as when the model order p < M, the error
was calculated as the difference between the corresponding estimated bearing and the
nearest true bearing. The fact that some bearings were completely missed this way was not
taken into account in the results. The accuracy measurements shown in Figure 3 were
computed as the standard deviation of the bearing error for a particular model order.

(a)
102

10'

100

Bearing Accuracy 10'o io i
(degrees) (b)

102 --

10

Model Order (p)

FIGURE 3: Bearing estimation accuracy versus model order for the case of
equi-amplitude signals (SNR = 20 dB) with bearings of: (a) 40 and 100
degrees, and (b) 40, 70, 100, 140, and 160 degrees.

From the results shown in Figure 3, it is clear that the optimum model order is
equal to or slightly greater than the number of signals present. The large error that occurs
for model order selections that are too low or too high supports the observations made in
Figure 2. It should be pointed out that Figure 3 is highly contrived (compared to what
might be expected in a true multipath environment) since the parameters of the true
signals used in Figure 3 were chosen to be within the resolution capabilities of the AR
spectral estimator, i.e. bearings were widely spaced, and signal powers were reasonably
strong compared to the noise power. However, in cases where the AR estimator is unable to
resolve two or more signals, the accuracy of the estimate degrades rapidly to the point that
the estimates for any model order are not much more accurate than random guesses. In
general, Figures 2 and 3 indicate the need for some method to choose the correct model
order.

Algorithms designed to determine the best model order take advantage of two
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properties of AR filters. The first property is that as the model order is increased from 1 to
N-i, the rate of decrease of the prediction error variance a2 (see equation (1.4)), is greater
when the model order is less than the number of signals than compared to when the model
order is greater than the number of signals. The second property is that as the model order
increases, the variance in the estimates of the AR tap weight coefficients increases.

30

25

Prediction Error ±

Variance in dB 10
5-

00O0 510) 1

Model Order

FIGURE 4: Prediction error variance versus model order for the example shown in
Figure 2.

Figure 4 demonstrates the first property where the "kink" in the prediction error
variance curve corresponds to the number of signals, which in this case was 2. Although
one might be tempted to base model order determination on locating this kink, the problem
becomes far more difficult when closely spaced signals in bearing, lower signal to noise
ratios and signals of different powers are considered, as illustrated in Figure 5. However, by
taking advantage of the second property, the optimum model order can be estimated by
comparing the decreasing prediction error (as shown in Figure 4) versus increasing bearing
estimation variance as the model order is increased. Most of the model order determination
algorithms discussed in this report are based on this idea.

20

15

Prediction Error 10
Variance in dB 5

05 10 15

Model Order

FIGURE 5: Prediction error variance versus model order for signal bearings of 40 and 70
degrees, and powers of 1.0 and 0.1 units.
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One of the earliest approaches, called the Final Prediction Error algorithm (FPE)
[4] was proposed by Akaike in 1969. It is given by,

FP E(p)~o2 =-'N+( +1] (2.2)

where 42 is the variance of the prediction error for the AR model order p. It is assumed
that the sample mean has been subtracted from the data (this assumption also applies to
the rest of the algorithms discussed in section 2.0). The minimum of the above function
gives the estimate of the optimum model order.

In 1974 Akaike proposed another model order selection algorithm called the
Akaike Information Criterion (AIC) [4] based on a maximum likelihood approach.
Assuming the process has Gaussian statistics, the algorithm is given by

AIC(p) = Nln(ar,) + 2p (2.3)

The model order is again selected as the value which minimizes this function.

Statistically, it was determined that the AIC method was inconsistent since the
probability of error in choosing the correct model order does not approach zero as the
number of data values N approaches infinity. In response to this, Rissanen developed a
variant algorithm in 1983 which is statistically consistent for large N, called the Minimum
Description Length (MDL) [5]. Again assuming Gaussian statistics, the model order is
determined by minimizing the following function,

MDL(p) = Nln(a0) + 2p ln(N) (2.4)

At the same time that Akaike introduced the AIC algorithm, Parzen introduced
an algorithm he called the Criterion Autoregressive Transfer function (CAT) [6]. The best
estimate of the optimum model order is determined by minimizing the function

p

CAT(p) = (-h z') + v-1 (2.5)
jl

where

v,- [N/(N- J)] o2 (2.6)

Figure 6 provides two examples of the performance of these algorithms for a single
sensor data vector (again using a 16 element array with the same signal and noise
parameters used in Figure 3). In these two examples, all the algorithms were successful in
choosing the optimum model order (i.e. equal to, or slightly greater than the number of
signals).

9
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FIGURE 6: Model order determination algorithms for a (a) two signal case, and (b) a
five signal case

In general, the derivation of the algorithms described in this section depend on
approximations which are true for large samples (i.e. N large) but do not necessarily hold
in the case of short data records. Researchers have found, that for the case of short data
records involving sinusoids in noise, none of the algorithms work well [7] and in general
tend to pick a model order that is too low. This conclusion is also supported by the results
shown Figure 7 which gives a histogram of the predicted model orders for each algorithm
for 100 trials of a 5 signal environment (the same sensor data that was used in Figure
3(b)).
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3.0 MODEL ORDER DETERMINATION FOR THE COVARIANCE
AND MODIFIED COVARIANCE METHOD

The covariance method of estimating the autocorrelation matrix uses only known
data, thus avoiding the use of windowing which degrades the resolution of the spectral
estimator. Based on equation (1.10) the covariance method can be defined as,

Nt Il HR = jXtX. (3.1)

i--0

An important feature of the autocorrelation matrix estimated in this manner is that the
rank of the matrix is the lesser of N-p (the number of linear independent data vectors
used), or, p+l, (the length of the data vector).

The modified covariance method takes advantage of the relationship between the
forward data vector xi and the conjugated reverse data vector yj given by,

E{x, xj} = Efyj yz . (3.2)

This is used to generate an improved autocorrelation matrix estimate which can be defined
as

A'P H  v _ H

R= xixi + yy. (3.3)
t =-0 i=0

The advantage of this method, compared to the covariance method, is that each
autocorrelation matrix element is produced from twice as many data values which results
in less variance in the estimates. Additionally since twice as many linearly independent
data vectors are used, the rank of the matrix is the lesser of 2(N-p) or p+l. Based on rank
considerations, the maximum number of signal bearings that may be solved using the
modified covariance method is 2N/3 as compared to N/2 for the covariance method. Given
these advantages, and since very little extra processing is involved, the modified covariance
method is the more preferred method for direction finding type problems. Most of the
following discussion centers on the modified covariance method. However, the remarks
made concerning this method may readily be extended to the covariance method by taking
the differences discussed above into account.

Figure 8 illustrates the effect of changing the model order on the spectral
estimates when the modified covariance method is used (the sensor data in this example
was the same used in Figure 2). As in the autocorrelation method, the best results occur for
model orders equal to or slightly greater than the number of signals present.

12
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FIGURE 8: Effect of the choice of AR model order on the estimated DF spectrum.
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Figure 9 shows the effect of changing model order on the accuracy of the bearing
estimates using the modified covariance method. The sensor data, and method of
computing the sensor data was described previously in section 2.0 for Figure 3. An
examination of Figure 9(b) shows that this plot can be broken down into 5 separate
regions. In the first region, p<5, the model order is less than the number of signals present
so that it is not possible to determine all the signal bearings. As in the autocorrelation
method, this results in poor estimates of the spatial frequency spectrum.

(-)
102

100

Bearing Accuracy 0-jo 10 I's
(degrees) (b)

10'

100

0

Model Order (p)

FIGURE 9: Bearing estimation accuracy versus model order for the case of
equi-amplitude signals (SNR = 20 dB) with bearings of: (a) 40 and 100
degrees, and (b) 40, 70, 100, 140, and 160 degrees.

In the second region, 5<p<7, the model order is sufficiently high that it is now
possible to determine all the signal bearings, but not high enough that spurious estimates
occur. In comparing the estimation accuracy in this region to the rest of the plot, it is clear
that this region represents the optimum order for the AR spectral estimator.

In the third region, 8 <p<10, spurious estimates occur which degrade the accuracy
of the bearing estimates (i.e. if a spurious peak in the DF spectrum is larger than any of
the signal peaks, it is then mistakenly assumed to be a signal peak). The error introduced
by the spurious estimates increases as the number of extra model coefficients (p-M)
increases. Additionally as the order increases, the variance in the estimates increases as
well due to the decreasing number of data values used to form each element of the
autocorrelation matrix.

In the fourth region, ll<p<13, although the model order is increasing, the rank of
the autocorrelation matrix decreases according to the function 2(N-p). As a result, the filter
tRp weight ropfficients can no longer be uniquely determined. An appropriate choice for the
tap weight coefficient vector (defined by equation (1.6)) is the vector which has the

14



minimum norm (where the vector norm is given by ala) of all possible solutions. This
vector is unique and has the desirable property that spurious estimates are suppressed [8].
Using the tap weight coefficients generated in this manner, the reduced rank effectively
reduces the number of signals (including spurious signals) that may be uniquely
determined. In consequence, as the order increases, the rank decreases, and the number of
spurious signals and resultant bearing error variance decreases.

A special case occurs when the rank of the matrix given by 2(N-p), equals the
number of signals M (such as for p=15 in Figure 9(a)). This is called the Kumaresan-Prony
case [9] and is of special interest since only the actual signal bearings can be uniquely
determined i.e. spurious signals do not occur. Choosing the model order corresponding to
this special case is also equivalent to using noise suppression techniques discussed in section
4.0 without the penalty of additional processing. The difficulty is that knowledge of the
exact number of signals is required, an issue which is also discussed in section 4.0.

In the fifth region, p>13, the rank of the autocorrelation matrix decreases below
the minimum required value (in this case 5) and so suffers the same problems as those of
the first region, plus in addition, the effect of increasing variance in the autocorrelation
matrix estimate.

To determine the correct model order, the algorithms discussed in section 2.0
could be used. However, as discussed previously, these algorithms have not been found to
work well for short data segments. Lang and McClellan [10] showed analytically that a
model order selection of about N/3 provides good results for both the covariance and
modified covariance methods. This seems reasonable in view of the results shown in
Figure 9, assuming the number of signals M<N/3, otherwise errors will occur since there
would be an insufficient number of tap weight coefficients to estimate all the signal
bearings.

4.0 MODEL ORDER AND SIGNAL NUMBER DETERMINATION USING
THE EIGEN DECOMPOSITION METHOD

Improved AR spectral estimates can be made by taking advantage of eigen
decomposition techniques to generate a better estimate of the noiseless autocorrelation
matrix, and improve the spectral estimates. A summary of this method is given in the
following paragraphs.

For the case of signals in white noise, the autocorrelation matrix can be
represented as

M-1

R = ZAkvkvk + tn2I, (4.1)
k =O

where Ak represents the non-zero eigenvalues of the noiseless autocorrelation matrix and are
ordered from largest (Ao) to smallest, vk represents the corresponding eigenvectors and ?72

represents the noise variance of the sensor noise. The first term represents the signal
correlation matrix where it is assumed that M<p and the second term represents the noise
correlation matrix. Ideally, knowing the signal correlation matrix would allow the
calculation of the exact signal bearings.
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FIGURE 10: Effect of the choice of AR model order on the estimated DF spectrum.
Actual signal bearings are shown by the dashed lines. Signal powers were 1.0
and the noise variance was 0.01 (i.e. signal to noise ratio of 20 dB).
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The actual eigen decomposition of the autocorrelation matrix is given by,

t4-I N- IR = -(Ak+72)VkV" + 272VkV" (4.2)

k=O k=M

where Ak+712 represents the M largest eigenvalues of R and 772 represents the N-M+1
smallest eigenvalues of R. The first summation term in the above expression is called the
signal subspace since it is spanned by the signal vectors (plus noise) while the second
summation term is called the noise subspace since it is spanned only by noise vectors.

The above results are only approximately true in the case of the estimated
autocorrelation matrix, and only apply if either the covariance or modified covariance
methods are used. (The data windowing used in the autocorrelation method spreads some
of the signal power into the noise eigenvalues making it difficult to separate the signal and
noise subspaces for small data vectors). However, by performing the eigen decomposition
on the estimated autocorrelation matrix and then using its signal subspace equivalent (i.e.
the smallest N-M±1 eigenvalues are set to zero) improved signal bearing estimates result.

Since the deletion of the noise subspace results in a reduced rank autocorrelation
matrix, there are an infinite number of solutions for the tap weight coefficient vector. For
the same reasons discussed previously in section 3.0, the solution vector is chosen as the
one with the minimum norm. The improvement in the DF estimates - as manifested by
the suppression in spurious peaks - using these techniques and shown in Figure 10 is
obvious when compared to Figure 8.
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FIGURE 11: Bearing estimation accuracy versus model order for the case of

equi-amplitude signals (SNR = 20 dB) with bearings of: (a) 40 and 100
degrees, and (b) 40, 70, 100, 140, and 160 degrees.
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Figure 11 shows the effect of changing model order on the accuracy of the spectral
estimator for the identical data set as was used in Figures 3 and 9. In this case the effects
of noise have been significantly reduced which has the effect of relaxing the restriction on
the choice of the optimum model order. Kumaresan and Tufts have experimentally
determined that a model order of p=(3/4)N is a reasonable choice [8] which is supported by
the results shown in Figure 11. However, in using the modified covariance method, a choice
of p=(2/3)N might be more suitable since this results in the maximum rank of the
autocorrelation matrix, and correspondingly, the maximum number of signals that may be
estimated, without any significant loss in resolution.
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FIGURE 12: Effect of the choice of signal number, m, on the estimated DF spectrum. AR
filter order p=10 (see Figure 10(j)).
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Up to this point it has been assumed that the number of signals was known which
would allow one to make the division between the noise and signal subspaces in equation
5.2. In practice this is an unrealistic assumption and some method is required to determine
this value since spurious estimates can result when the incorrect value is chosen as shown
in Figure 12. One method that has been proposed is to examine the eigenvalues to try and
determine the division between the larger signal subspace eigenvalues and smaller noise
subspace eigenvalues (see Figure 13). This is analogous to examining the forward prediction
error variance to determine model order as discussed in section 3.0, and the problems in
doing the determination this way are identical.

40
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Magnitude
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-40 '0____

04 68 £0 12

Eigenvalue Number

FIGURE 13: Eigenvalues of the autocorrelation matrix used in Figure 12

Using a similar approach as discussed in section 3.0, Kailath and Wax have
reformulated the AIC and MDL algorithms based on using the eigenvalues of the
autocorrelation matrix [11]. The results are given by,

p

AIC(m) = N (p - m) In + m (2p - m), (4.3)

and,

P

MDL(m) = N (p - m) In [ ,m 1A + m (2p- m) In(N) (4.4)

The optimum signal number m is found by minimizing the above functions. The values A,
are the eigenvalues of the p p autocorrelation matrix which is formed by deleting the first
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row and first column of the (p+1),(p+l) estimated autocorrelation matrix (formed using
either the covariance or modified covariance method).

Figure 14 shows two examples of how both the AIC and MDL algorithms perform
for the same data used in Figure 6 (section 2.0).

() (b)

MDL -5oo
AO 00

- looo -43oo

-1000

0~0

FIGURE 14: Signal number determination algorithms for a (a) two signal case, and

(b)l a five signal case

At the present time, little is available in the open literature describing the
performance of these algorithms. To provide some idea of their performance both the AIC
and MDL algorithms were tested against sensor data simulated for a 16 element DF array
over 100 trials (the number of signals was 5). The method of generating the data was
identical to that described for Figure 3(b) and Figure 7 in section 2.0. The results are
shown in Figure 15. In this particular example both the AIC and MDL algorithms were

perfect.

To test these algorithms against a more difficult signal environment, the
simulations were re-run with signal powers randomly chosen to be between 10 and 40 dB
reater than the noise power, signal phases randomly chosen between 0 and 2w, and signal
earings randomly chosen between 0 and 180 degrees. Figure 16 (a) shows the results.
Under these conditons the performance of both algorithms was severely degraded with the

correct number of signals (5) being determined less than 50% of the time. However, inexaminin the cases when the AIC or MDL algorithm failed to correctly determine the
number signals, it was determined that in most of these cases it was not possible to
a rate est a te all signal bearings from the DF spectrum. Consequently the trials for

Fi gure 16(a) were rerun, except trials where any of the five estimated bearings deviatedom the true bearing by more than 5 degrees were discarded. Figure 16(b) shows the

results.
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FIGURE 15: Performance .of the model order determination algorithms using the
sensor data from Figure 3(b), i.e. 100 trials of a 16 element system in a
five signal environment.
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FIGURE 16 Performance of the model order determination algorithms as in Figure 15
except (a) signal powers, phases, and bearings were randomly chosen, (b)
same as (a) except trials where estimated bearings were > 5 degrees were
ignored.
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5.0 SUMMARY AND CONCLUSIONS

In this report, methods to determine the optimum model order of adaptive filter
techniques (in particular autoregressive filters) applied to the problem of radio direction
finding were evaluated. In filter terms model order is the number of filter stages. In
direction finding (DF) terms, the model order determines the antenna subarray size for
spatial smoothing. In the case of direction finding techniques using the eigen decomposition
method, the related problem of determination of the number of signals was also considered.

Spatial smoothing is a technique which is used to improve direction finding
accuracy in the presence of multipath by using antenna subarrays (smaller than the full
array) to decorrelate the various multipath signal components. For the noncoherent signal
case (uncorrelated signals transmitted by separate sources), this technique would generally
not be required since the signals can be decorrelated in time, and consequently the full
array is used (which corresponds to a model order of N-1 where N is the number of
antennas in the DF array).

In a multipath environment, the optimum model order is generally not known
before hand, so a number of model order determination methods have been proposed to
tackle this problem. In this report, these were classified according to the autocorrelation
matrix estimator used. Three classes of estimators were considered. They were: (a) the
autocorrelation method, (b) the covariance and modified covariance method, and (c) the
eigen decomposition method.

The autocorrelation method is not appropriate for accurate direction finding
purposes since adaptive filter DF techniques based on this method have very poor
resolution. However, it was discussed since the first model order determination algorithms
were proposed for this method, and many of the problems encountered are common to all
classes. Four algorithms were considered, namely, Forward Prediction Error (FPE),
Criterion Autoregressive Transfer function (CAT), Akaike Information Criterion (AIC),
and Minimum Description Length (MDL). The performance of these algorithms is quite
poor, typically picking model orders that are too low.

The covariance and modified covariance methods are much superior for direction
finding purposes than the autocorrelation method. It has been determined both analytically
and experimentally that a model order of between N/3 and N12 is suitable. At higher
model orders spurious peaks begin to appear in the DF spectrum. This leads to a severe
degradation in the bearing accuracy since these spurious peaks are often indistinguishable
from signal peaks, and consequently erroneous bearing estimates are made using these
peaks.

The eigen decomposition method enhances the signal to noise ratio of the
autocorrelation matrix estimated using either the covariance or modified covariance
method. This enhancement suppresses spurious bearing estimates so that higher model
orders can be used. Values of between 2N/3 and 3N/4 have been proposed.

One difficulty with using the eigen decomposition method is that the number of
signals is required. In practice, this value is generally unknown. This problem is closely
related to the model order determination problem, and as a consequence, both the AIC and
MDL model order determination algorithms have been reformulated for this problem. In
relative terms, the performance of these algorithms is much superior than the
corresponding algorithms tested for the autocorrelation method. From the results of
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simulations performed for this report, it is expected that the performance of these
algorithms will degrade under realistic conditions (i.e. closely spaced signals in bearing, low
signal to noise ratios, etc.), but that this will occur at the same time as the accuracy of
eigen based DF algorithms also degrade.

In general, signal determination methods used in conjunction with DF methods,
where both are based on using the eigen decomposition method, appear to offer the best
performance when the accuracy of the DF bearing estimates is considered. Model order
determination methods based on the autocorrelation method were found to perform poorly
and are considered inappropriate for DF purposes.
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